
P R E S E N T A T I O N

International Conference On
Software Testing Analysis & Review

October 29-November 2, 2001
San Jose, CA USA

Wednesday, October 31, 2001
10:30 AM

DESIGNING AN AUTOMATED WEB
TEST ENVIRONMENT

Dion Johnson
Pointe Technology Group, Inc.

WG2

Presentation
Paper
Bio
Conference-at-a-Glance
Return to Main Menu

Designing an Automated Web Test Designing an Automated Web Test
EnvironmentEnvironment

Dion Johnson
Senior Software Test Engineer

Pointe Technology Group
October 31, 2001

AssumptionsAssumptions

• Familiarity with automated testing and
testing tools

• Familiar with the internet

• The testing tools used are GUI testing tools

Common ApproachCommon Approach
• Spare time automation
• Record and playback
• Add checks based solely on current web

environment
• Non-categorized format
• Add some parameterization
• Replace code with functions

Common Approach ResultsCommon Approach Results

• Hard to maintain scripts
• Redundancy in scripts
• Excessive rework
• Script execution that needs

monitoring
• Automation performance issue
• A one dimensional suite of

scripts

Improved ApproachImproved Approach

• Design the environment first by taking into
account the following:
– Script maintainability, and flexibility

– Script performance

– The different levels of testing

– Number of applications

– Number of environments

– Different browsers used

Improved ApproachImproved Approach

• After the appropriate considerations
have been made, do the following:
– Create the appropriate directory/test

suite structure

– Develop initialization and
configuration parameters

– Create functions

– Design test scripts based on pre-
defined testing levels

Directory StructureDirectory Structure

• Create sub-directory for test components
• Component definitions
Ø Init Script – brings the environment to a controlled stable point
Ø Config Script – sets certain parameters needed for the test run
Ø GUI Map files – files that contain the AUT’s (Application Under Test)

object logical names and physical descriptions
Ø Function Lib – set of functions used in the test suite
Ø Driver Script – script that coordinates test activities by calling other

scripts
Ø Test Scripts – scripts that actually execute tests, and perform verification

checks

Init Script Config Script Function LibGUI Map Files Driver Script Test Scripts

Environment Root Directory

Initialization ScriptsInitialization Scripts

• Initialize Automation tool
– Load compiled modules
– Load functions
– Customize GUI configuration
– Set global wait/think times
– Set directory path variables

• Initialize Web AUT
– Clear Cache
– Stabilize cookies
– Stabilize frame format

Initialization ScriptsInitialization Scripts

• Initializing the AUT can prevent several issues
that pose potential problems for automated tests.

The cache saves
this link color,

which was
changed by

clicking on it.

This message box
is generated by a
separate tool, so

it may or may not
appear

This link goes to
two different

windows,
depending upon

how the cookie is
set.

Configuration Files/ScriptsConfiguration Files/Scripts
const TestEnv = Test1;
.
.
Case”Test1”{

database = db1;
server = srv1;
userID = Dion1;
baseURL = “http//www.machine1/”;
break;
}

Case”Test2”{
database = db2;
server = srv2;
userID = Dion2;
baseURL = “http//www.machine2/”
break;
}

Sue

John

Configuration Files/ScriptsConfiguration Files/Scripts

• Set automation environment path

• Set variables to identify current test environment

• Set user IDs and passwords

• Set pointers to databases

• Set attributes for different application

• Set public variables and constants

• Set variables that determine the level of testing

Function LibraryFunction Library
• Creating functions first to prevent unnecessary rework

Redundant

Code

Function

Library Function

Callà àX

• Some Examples of typical functions are:
– Navigation functions
– Core Business functions
– Error handling functions
– Loading functions (GUI maps, compiled modules)
– Miscellaneous functions

• Window_check function
• Date/time check function
• Account number/login ID check

Test ScriptsTest Scripts
• Assemble existing components (Nav functions, Core Bus.

functions, Error Han. functions) with verification checks,
parameterization code, code to make all components work
together

<code>

Navigation_function(arguments);

<code>

Core_Business_function(arguments);

<code>

Verification Checks;

<code>

Case”Tier [1-N]”:

Navigation_function(arguments);

Core_Bus_function(arguments);

Verification Checks;

break;

Case”Tier ![2-N]”:

Navigation_function(arguments);

Core_Bus_function(arguments);

Verification Check;

break;

• Incorporate Tier testing levels

Testing LevelsTesting Levels

• Application tests
• Link tests
• Link checks
• Parameterization tests
• Cosmetic checks
• Content checks
• Combinations of the above

Application Test LevelApplication Test Level

• Tests the functionality of the application

Links Test LevelLinks Test Level

• Checking vs.
Testing Links
– Link Checking

• Checking link’s
URL

• High and low level

– Link Testing

• Clicking on link to
test attributes

• Low level testing

Parameterization Test LevelParameterization Test Level

• Usually done within application test level scripts
• Parameterization should be done during script

creation
• When to parameterize

– When the same test needs to be executed with different
data

– When the same test has multiple scenarios

• Should be linked to a configuration parameter that
allows you to globally turn off parameterization
(Set iterations equal to 1)

Cosmetic Checks Test LevelCosmetic Checks Test Level

• Done in application and link test level
• Includes things such as bitmap checks, that

verify the look of a page
– Bold letters
– Text positions
– Anchor link functionality

• Should be linked to a configuration
parameter that allows you to globally turn
off cosmetic checks

Content Checks Test LevelContent Checks Test Level

• Done in application and link test level
• Includes things such as GUI checks, that verify

the layout and data inside of a page
– Frame layout and size
– Table layout and dimensions
– Frame text
– Data populated from backend database

• Should be linked to a configuration parameter that
allows you to globally turn off content checks

Additional Web Automation Additional Web Automation
TechniquesTechniques

• In web test automation, it is a good practice
to use regular expressions (wild cards) in
URLs, whenever possible

– ie.
!.*designing/web-automation

Instead of

http://www.pointe.8011.com/designing/web_automation

Additional Web Automation Additional Web Automation
TechniquesTechniques

• Design scripts to be used by several similar
applications and by different browsers
– Use control flow functions to make the scripts

compatible with all applications

– Should be linked to a configuration parameter
that allows you to globally set the current
application and/or browser

SummarySummary

• Make considerations

• Create the directory structure

• Develop initialization and configuration parameters

• Create functions

= Automation Tool

= Automated Web Test Environment

= Test Scripts

• Create test scripts
– Assemble components from the above steps
– Incorporate Tier testing levels
– Incorporate test and check testing levels

Questions ???

 8201 Corporate Drive, Suite 700 ♦♦ Landover, MD 20785 ♦♦ (800) 730-6171/(301) 306-4400 ♦♦ Fax (301) 306-4421

Quality Technology Solutions www.pointetech.com

Designing an Automated
Web Test Environment

Presented by:

Dion Johnson
Senior Test Consultant

October 31, 2001

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
1

Designing an Automated Web Test
Environment

Dion Johnson
Pointe Technology Group, Inc.
8201 Corporate Drive
Landover, MD. 20785
djohnson@pointetech.com
diondjohnson@hotmail.com

Abstract

This paper offers an alternative to the typical automated test
scripting method of ‘record and playback now and enhance the
automation environment later’. It explores a regression automation
system design for testing Internet applications through the GUI,
along with scripting techniques to enhance the scalability and
flexibility of an automated test suite. This paper will present a basic
structure for an automated test environment, and will expand on
each of the items found in that structure. Web testing levels will be
laid out, along with a basic approach to designing test scripts
based on those web-testing levels.

Introduction

It is not very difficult these days to sell those who are involved in the IT industry on the
importance of regression automation – at least the theoretical importance. It seems as
though most understand and are able to spew out, with robotic precision, that:

1. Automation saves time
2. Automation can be run over and over again (repeatable)
3. Automation runs tests the same way each time, maintaining reliability
4. Automation is our friend…

The automation-inhibiting problem, however, is the belief that automation should require
no additional thought other than that which requires one to execute existing manual test
cases with an automation tool.

In order to facilitate the desire to crank out quick and thoughtless automated tests, the
industry is creating more and more “user friendly” GUI automation testing tools, many of
which are geared towards web-based applications. These tools offer record and
playback features that generate code or code-less visual scripts that may test one’s
application by simply navigating through it. These applications, with their increased
capabilities, can be extremely helpful, but also add to the problem. One of the major
selling points for some of these applications is that, “With our application, you save a lot
of time because you don’t have to spend time thinking about, and planning out how you

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
2

want to perform your tests. You just record your steps, and our tool will put in the
checks for you.” What they fail to realize is that eventually, some thought will have to
take place, be it proactive or reactive, and reactive thought is almost always more time
consuming.

It is important to avoid falling into the trap of believing that some magical tool is going to
eliminate the need for thinking and planning. This paper helps dispel that myth, along
with providing some specific information for designing an automation environment. The
design is specifically geared towards web test automation.

Common Approach
With many, getting an automation tool is like a kid getting a new toy – they jump right in
and start playing. And the resulting test suite, much like a child’s new toy, just doesn’t
last.

A common approach for test automation may include the following:

v Automate test only during “spare time”
v Jump right in and start recording scripts
v Add application checks with no particular method
v Add some parameterization later
v As time passes and the number of scripts increases, replace some of the

redundant code with functions

This approach presents several problems. Spare time automation keeps the entire effort
from getting the focus that it needs, and it is often at the forefront of all other automation
problems and stumbling blocks. Stumbling blocks such as hard to maintain scripts.
When scripts are simply recorded with no forethought or design, what typically happens
is that they won’t play back exactly as recorded, prompting the need for some patchwork
solution that gets the script to behave as desired. Patchwork solutions don’t consistently
work, or stand-up over time, making the script very hard to maintain.

Redundancy also results from this common approach to test automation. When the
same actions appear in several different places or scripts, and that action changes in the
application under test (AUT), the change will need to be reflected in all of the scripts that
use that action. Excessive rework and reactive function creation are the results.

The patchwork solutions and rework, along with any unforeseen issues that may occur
during a test run, will affect the performance of the script.

Another problem that occurs with this jump-in-head-first-approach is that it yields a one-
dimensional suite of tests. In other words, the scripts are only readily available to be run
at one level, and in one location.

Improved Approach
Test automation involves developing test scripts, so the software tester is in effect
creating a software application. The test automation application should, of course, be on

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
3

a much smaller scale, than the larger application that it tests, because spending too
much time on automation, or trying to automate too much can be counter-productive. At
the same time, however, automation should be treated more like a software
development project. See Pettichord’s “Seven Steps to Test Automation Success” for
more information on this concept.

Part of treating test automation more like a software development project, is the design
phase. Manual test cases are often independent of each other; so creating automated
test cases solely from manual test cases will result in a group of independent test scripts
that all have to be maintained separately and differently. The improved approach to test
automation that this paper addresses, deals with creating an automation test
environment, instead of just creating scripts.

Prior to designing the automation environment the following considerations are made:

v Script maintainability and flexibility
v Script performance
v The different levels of testing
v The number of applications under test
v The number of environments testing takes place in
v The different browsers used to test the web applications

After the appropriate considerations are made, the following the steps can be taken to
design the automated web test environment:

v Create the appropriate directory/test suite structure
v Develop initialization and configuration parameters
v Create functions
v Design test scripts based on pre-defined testing levels

Considerations
Script maintainability and flexibility
The maintainability and flexibility of automated tests pose the following question – if the
application or data in the application were to change, how much work would it take to
update the automated test that accesses the changed portion of the application? The
automation environment and scripts need to be designed in a way that minimizes the
amount of work involved in maintenance.

Script performance
Performance is a major concern for software applications, particularly internet
applications. By the same token, performance of automated tests should also be of
concern. As mentioned earlier in this paper, one of the advantages of automating tests
is that the execution is faster than manual execution. If the performance of automated
tests is ignored or taken for granted, the time saved by running automated tests can be
drastically reduced.

Different levels of testing
In a perfect world, there would be an unlimited amount of time for testing…. Correction.
In a perfect world, there would be no need for testing, because the applications would

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
4

be developed with no bugs. Since we live in neither perfect world, it is necessary to
develop automated tests that are able to conform to the varying schedule that testers are
given from release to release, and even from build to build. Not all builds contain the
same types of things. Depending upon the nature of a build, the time given to test it may
vary from a few minutes to a few days (maybe more). Full regression may not always be
an option. Only certain types of testing actions might be allowed, and these different
types of actions comprise different levels of testing.

The number of applications under test
A software project that requires testing may consist of more than one AUT. When
responsible for automating tests for all of these applications, it is important to take into
consideration the things that each of these applications have in common and how they
are related, and design the automated test environment accordingly.

The number of environments testing takes place in
A software project may have several different environments that testing occurs in. Most
have at least the following three:

1. Functional test environment
2. Development environment
3. Production environment

Each environment may be on a different machine, connect to a different database, and
limit the types of testing that can be executed. The user shouldn’t have to go to several
different places to set up several different parameters every time the automation test
suite is ready to be run. The automation environment should account for the variations.

The different browsers used to test the web applications
Theoretically, If an application is required to be compatible with several different
browsers, it should be the same on all of those browsers it is compatible with. In
actuality, there may be several subtle differences among browsers that the automated
test environment should be equipped to deal with.

Design Steps
Create the appropriate directory/test suite structure
As mentioned before, test automation is a small-scale form of software development that
involves creating a software package. It is important for this package to have a pre-
planned directory structure, for several reasons. First, it is important because one
obviously needs to know where things are going to go. Second it is important because
this package may need to be moved as a whole. The environment may need to be
copied and installed onto another machine. Creating a directory structure makes the
environment portable.

Develop initialization and configuration parameters/scripts
These are parameters/scripts that set up the environment before actually running the
scripts that test the AUT. These parameters basically control the other components of
the automated web test environment.

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
5

Create functions
Function creation does not have to begin after the test script creation. There are basic
actions that take place during testing, that one knows ahead of time will be executed
over and over again. So why wait until the test script creation begins? Create functions
for those highly repetitive actions at the beginning.

The function samples in this paper are geared towards automation tools with a scripting
language, but keep in mind that functions should be created when using automation
tools that use visual script, also. Many of these applications provide a way to reuse
blocks of script.

Design test scripts based on pre-defined testing levels
Designing testing levels was discussed under the Considerations sub-heading.
Specific web test levels will be discussed later on in the paper.

Directory Structure

There are several components of the automated test environment. Above is a chart
displaying a pictorial representation of how the components fit into the environment.
Below is a list containing component definitions. It may also be necessary to create a
sub directory for each component shown.

Component Definitions
Init Script
The Init Script (initialization script) brings the environment to a controlled stable point. If
the environment is initialized, there is a better chance of the test scripts running properly.
Some specific initialization parameters will be discussed later.

Config Script
The Config Script (configuration script) sets certain parameters needed for the test run.
Some specific configuration parameters will be discussed later.

Init
Script

Config
Script

GUI Map
Files

Function
Library

Driver
Script

Test
Scripts

Environment Root
Directory

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
6

GUI Map Files
Whether or not this component exists, depends on what tool is used. The name “GUI
Map” comes from Mercury Interactive’s WinRunner tool. Other tools may have
something similar to a GUI Map, but it may have a different name. The GUI map serves
as an interpreter that enables the automation tool (i.e. - WinRunner) to communicate
with the AUT.

Function Lib
The Function Lib (function library) is a set of functions used in the test suite. It is
normally loaded at the beginning, and functions are called from it throughout the test run.
Some specific types of functions will be discussed later.

Driver Script
This is the script that coordinates test activities by calling other scripts. It controls
everything that takes place during the test run. The driver is what allows the execution
of several scripts, without supervision. It may run initialization scripts, set up
configuration parameters, load GUI maps, and run test scripts.

Test Scripts
These are the components that actually perform tests, and verify that the AUT works as
desired. The two actions listed in Example 1 is a representation of a test script. Test
scripts perform actions, and generate results files.

Initialization Scripts
The main difference between items that are placed in the initialization scripts and items
place in the configuration scripts is that items in the initialization script are not likely to
change from test run to test run, or from machine to machine. Settings in the
initialization script are going to remain fairly constant throughout the project life cycle, but
may change occasionally. There are two basic types of initialization scripts.

v Automation Tool Initialization Scripts
v AUT Initialization Scripts

Automation Tool Initialization Scripts
The Automation Tool Initialization Scripts initialize the automation tool, by doing several
things. These scripts may load compiled modules, such as function libraries, so that
they may be used throughout the time the automation tool is in use. They may
customize GUI Maps, and may include global wait/think times, and directory path
variables.

AUT Initialization Scripts
The AUT Initialization Scripts initialize the application under test. There are some very
specific tasks that need to be executed when dealing with a web AUT, however, that are
probably not a concern for other client/server applications. These tasks include:

v Clearing the cache

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
7

v Setting cookies
v Setting frame format

Clearing the cache
Miller talks about the importance of clearing the cache in his paper entitled, “WebSite
Testing”. Under the heading, WEBSITE TEST AUTOMATION REQUIREMENTS, he
asserts that since caching can improve the apparent performance of the web site, it
should be cleared in order to get an accurate picture of the site response time. This is a
good point, but it may be argued, by some, that the response time is of little concern
when doing functional testing; the response times, it may be asserted, will be measured
during the load/stress testing. There is an additional reason that the cache should be
cleared, however. When dealing with Internet applications, it is common place for an
action to change the make-up of the application. The cache saves this new make-up,
which may cause a problem for automated test scripts, because the test scripts may be
looking for the default make-up during script execution.

Look at the following line of HTML code for example:

<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#000080" VLINK="#FFFF00"
ALINK="#C0C0C0" >

This line of code, in reference to the link, is saying that the color of the link prior to being
clicked is navy; while it is being clicked, it is yellow; after it is clicked, the color is silver.

The silver color of the clicked link is cached, so that even after leaving that page and
bringing it back up, the link will be silver instead of navy. This could pose a problem for
automation scripts when performing link validation. If it is looking for a link to be navy,
but it is silver instead, an unnecessary failure will be generated in the results.
Unnecessary failures compromise the integrity of the results.

Setting Cookies
Cookies are short pieces of data used by web servers to help identify web users, and
they have the ability to change certain site behavior. When this is the case, it is
important to create a set of initialization steps that ensure the application behaves as
expected.

Consider the following scenario. There exists a web page with two frames as seen
below.

The left frame has two links, while the right frame has a button. Clicking on Link 1 will
bring up a new page called Page 1, while clicking on Link 2 will bring up a new page
called Page 2. Clicking on Button 1 brings up a new page, but the page that comes up

Link 1

Link 2

Button 1

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
8

all depends on which of the two was clicked last. Each time one of the two links is
clicked a cookie is set on the server with information that specifies which link was
clicked. Based on the setting of this cookie, Button 1 may bring up Page 1 or Page 2.

In order to have a controlled environment, it is important to know what functionality is to
be expected out of Button 1. An initialization routine in this case, may simply involve
automating the process of clicking on Link 1 at the beginning of a test run.

Setting Frame Format
With Internet applications, it is not unlikely for pages to change their formats (table
arrangements, object names) based on certain actions, page handlers, etc. It therefore
becomes important to create an initialization routine that stabilizes the frame format.

Configuration Files/Scripts
Under the Improved Approach heading and Design Steps sub-heading, it mentions
initialization and configuration jointly. That’s because there is a fine line between
initialization elements and configuration elements. As alluded to in the previous section,
the main difference between the two is that the configuration elements are those
elements that will need to be changed more frequently.

The Considerations sub-heading under the Improved Approach heading lists several
items that need to be considered before designing the automation environment, and
these items were discussed in detail. The Configuration file/script is what manages how
these considerations are put into action in the automation test suite.

More information on how configuration components are used in the scripts will be given
under the Test Scripts heading.

Function Library
The next step in designing an automated web test environment is the creation of
functions. There are some basic types of functions that will, without a doubt, be used
throughout the automation effort, and should be created prior to the creation of
automated tests. These function types are as follows:

v Login functions
v Navigation functions
v Error handling functions
v Loading functions
v Miscellaneous verification functions

o Window check
o Date/time check
o Account number/login ID check

Login Functions
These are the functions that login and logout of the AUT, and other supporting
applications. The login and logout processes are going to executed several times during

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
9

a test run, and are composed of very basic steps, so these functions should not be
difficult to create.

The login functions should be tied to several configuration parameters, such as the user
ID, and password configuration parameters.

Navigation Functions
Most applications have several main areas that are navigated to many times during
testing. For example, an application may have a Main page, a FAQ (Frequently Asked
Questions) page, an Account Services page, and several Orders pages.

Navigation for these different areas may be as follows:

Page Navigation
Main Main
FAQ Main à Account Services à FAQ
Account
Services

Main à Account Services

Orders 1 Main à Orders à Orders 1
Orders 2 Main à Orders à Orders 2

These paths are fairly basic, and can be put into functions at the very beginning of the
automation process.

Error Handling Functions
Error handling functions are functions created to deal with certain unexpected events
that may occur during testing. If nothing is set up to handle these events, they could kill
automation run completely. Internet applications have a fairly standard set of events that
occur regardless of the application. The list of events includes popup security windows,
information windows, and error windows, along with the page cannot be found frame.
Good portions of the events that will have to be handle require nothing more than
clicking an OK button to close the popup window. Many of these events can be turned
on and off in the browser, but some can’t be. For those that can’t be turned off, routines
should be created to handle them.

Loading Functions
Loading functions do exactly as the name implies – load things. These functions load
files and compiled modules for use by the automation tool. For example, in WinRunner,
GUI Map files need to be loaded. When several GUI Map files exist, it becomes much
simpler to put all of the load statements into a single routine, and execute them by
running that one routine.

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
10

Miscellaneous Verification Functions
Although most automation tools have built in checks that can be used to verify certain
application attributes, there are times when user defined checks are much more efficient.
Some user-defined checks that one may want to create include the following:

v Window check
v Date/time check
v Account number/login ID check

Window check
The Window check function’s purpose is to verify that a specified window or frame
appears. The biggest reward that can come from using the Window check function
comes in the area of script performance. Most automation steps and verifications occur
inside of window or frame. If the window or frame does not appear, the tool wastes time
trying to execute steps in a window that does not exist. The Window check function
creates the ability to first check for the existence of a window, then make the execution
of the following steps contingent upon whether or not that window exists.

Date/time check
This is a handy function to have when the date and time need to be verified in the
application. Since the date and time are dynamic fields, this function simply takes the
system clock information, puts each element (day, hour, minute, etc.) into an array, and
compares these elements to the date/time elements in the application.

Account number/login ID check
Web sites often have the account number or login ID listed on every page. Since the
exact same thing is being checked on every page, and the results for each page should
be exactly the same, it only makes since to have a function that does this check. This
function will use the login configuration parameter in its verification.

The login ID will normally follow some text that reads, “Login:” or “Account Number:” so
creating this function will simply involve performing some kind of text check on the data
that follows the “Login:” or “Account Number:”

Test Scripts
The final step in the design phase is designing the test scripts. The way an individual
test script is designed actually depends on the user’s AUT, but what this section does is
reveal how to incorporate web test levels into that design. The importance of this
concept is presented in the Improved Approach section.

In order to understand how to design a test script based on web test levels, it is
necessary to first break down the concept of web testing. The following list is comprised
of steps that separate web testing into components, and displays how to put those
components together to form basic web test levels.

v Examine the microscopic view of web testing
v Examine the macroscopic view of web testing
v Develop web test levels

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
11

Examine the microscopic view of web testing
Looking at web testing through a microscope yields that just about every type of web
testing is composed of the following checks:

v Server response time verification – testing to make sure the web site’s response

to certain actions doesn’t exceed a reasonable amount of time
v Content Verification – verifying the layout and size of frames and tables;

verifying text and returned data; verifying URLs
v Cosmetic Verification – verifying actual fonts, colors, and object positioning

appears correctly.

Examine the macroscopic view of web testing
From the macroscopic view, there are four testing categories:

1. Link testing
2. Application testing
3. HTML testing
4. Usability testing

Link testing
Link testing involves both checking and testing links. The difference between checking a
link and testing a link is fairly simple. Checking a link involves checking the link’s
properties to make sure the link is pointing to the correct URL. Testing a link involves
actually clicking on that link to ensure that the resulting page is correct, and has the
proper attributes.

Application testing
Application testing verifies that the AUT has the correct functionality. For example, if the
application places orders, a test would verify that the order was placed properly.
Parameterization is normally a big part of application testing, because several sets of
data are often used to test the same piece of functionality.

HTML testing
HTML testing verifies that the HTML code follows proper conventions, and doesn’t have
errors.

Usability testing
Usability testing is the method of determining the extent to which the intended user can
meet his or her goals using the system being tested. A system may work perfectly
according to the system design specifications, but if the intended user can't figure out
how to use this system to meet his or her goals, the system is ultimately a failure.
Usability testing actually involves intended users, and a method of measuring their
success in using the system.

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
12

Develop web test levels
When developing web test levels, it is important to evaluate the needs of the AUT’s
project environment. This section presents some basic levels based on an evaluation of
web testing in general, but one should feel free to expand upon these levels in one’s
own environment.

As discussed before, different levels of testing are developed to give the ability to focus
automation executions on varying aspect of the testing cycle. This is important;
especially when time is limited. Often times when performing manual testing, a project
lead may tell the test lead that the test team has two days to focus on a full build, or a
half day to focus on a build that incorporates only application changes. It is possible that
the project lead may go and tell the test lead that the test team has thirty minutes to test
a build that just focuses on link changes, after which time the build is going to be pushed
into production as an emergency patch.

Just as one should be equipped to honor the request when executing tests manually, so
should one be equipped to honor the request when executing tests through an
automated process. The testing levels listed in this section give that ability.

From the macroscopic view of web testing, it can be deduced that there are two basic
types of test scripts:

1. Link test scripts
2. Application test scripts

HTML testing will not be address in this paper, because a developer normally does it.
Usability testing will also not be addressed, because this testing normally takes place
prior to the actually development of the system.

Then combining the elements from the microscopic view of web testing with the
elements from the macroscopic view of web testing the following web test levels can be
derived:

v Application Tests
v Link Tests
v Link Checks
v Parameterization On/Off
v Cosmetic Checks On/Off
v Content Checks On/Off
v Combination of all of the above

The application test level and the link test levels can be controlled by simply picking
which scripts to run. The other test levels can be incorporated into the test script and
controlled by mapping each to a configuration parameter that accepts the values “On”
and “Off”.

In addition, testing levels can be created based on priority. These testing levels are
referred to as Tiers, with Tier 1 being the highest priority, Tier 2 being the second
highest priority, etc. The highest priority tests are executed first, with the lower priority
tests being executed as time permits.

Pointe Technology Group, Inc.

 October 31, 2001
 Designing an Automated Web Test Environment
13

Bibliography
Bret Pettiford, “Seven Steps to Test Automation Success”, StarWest 1999.
http://www.io.com/~wazmo/papers/seven_steps.html

Bret Pettiford, “Success with Test Automation”, Quality Week, 1996.
http://www.io.com/~wazmo/succpap.htm

Edward Miller, "WebSite Testing", Software Research, 2000.
http://www.soft.com/eValid/Technology/White.Papers/website.testing.html

Dion Johnson

Dion Johnson is a senior test consultant for Pointe Technology Group, Inc. He’s
responsible for providing IT consulting services that focus on the overall system
development lifecycle, with particular focus on the quality assurance and quality control
elements. Prior to joining Pointe Technology Group, Dion was with Bell Atlantic, where
he led a number of major testing efforts including an automated testing initiative.

	Title Page
	Presentation
	Paper
	Bio
	Conference at a Glance
	Return to Main Menu

