
P R E S E N T A T I O N

International Conference On
Software Testing Analysis & Review

October 29-November 2, 2001
San Jose, CA USA

Thursday, November 1, 2001
9:00 AM

TESTING IN THE EXTREME
PROGRAMMING WORLD

Robert Martin
Object Mentor, Inc.

TG1

Presentation

Bio
Conference-at-a-Glance
Return to Main Menu

Testing in the XP World
Object Mentor, Inc.

Copyright  1998-2001 by Object Mentor, Inc
All Rights Reserved

www.pairprogramming.com

www.objectmentor.com

www.junit.orgwww.xprogramming.com

2

We use processes because we are afraid.

nWe are afraid that
nThe project will produce the wrong product.

nThe project will produce a product of inferior
quality.

nThe project will be late.

nWe’ll have to work 80 hour weeks.

nWe’ll have to break commitments.

nWe won’t be having fun.

3

What is the first thing
known about a project?

Project Management

4

! !

! !

5

The Delivery Date is Frozen

6

The
Spec
V1

The
Spec
V2

The
Spec
V3

The
Spec
V3

The
Spec
VN.1

The
Spec
VN.2

The Spec is Never Frozen

7

Analysis

Design

Implementation

DFD
ERD

DD
ST

1 May 1 Nov1 Jul 1 Sep

The Waterfall Model

nDr. Winston W. Royce — 1970

8

Analysis

Design

Implementation

1 May 1 Nov1 Jul 1 Sep

Design provides insight to analysis

9

Analysis

Design

Implementation

1 May 1 Nov1 Jul 1 Sep

Coding provides insights to design.

10

Break project up into slices.

nDr. Winston W. Royce — 1970

1 May

1 Nov

1 Jul
1 Sep

11

But the phases were too compelling

nAt the end of analysis we know we are 1/3
done.

nAt the end of design we know we are 2/3
done.

nAnd that leaves 1/3 for implementation.

12

Analysis

Design

Implementation

1 May 1 Nov1 Jul 1 Sep

So we can’t slice the project

13

Analysis

Design

Implementation

1 May 1 Nov1 Jul 1 Sep

And we can’t have the back arrows.

14

Analysis

Design

Implementation

DFD

ERD

DD
ST

1 May 1 Nov1 Jul 1 Sep

And we need milestone artifacts.

ST
ST

ST
ST

ST
UML

Use
Use
esUse
Cases

DFD

ERD
ERD

DD
DD

15

And so the waterfall was born.

nAnd we lived with it
nFor better or for worse
nFor three decades.

16

Iterative Development.

High level analysis and Design

Slices cut across all sub-systems

UI

Comms

ControlSome UI,
Comms, and
 Control for
some behavior

Data is generated and used to calibrate the plan

17

Calculate the Date.

High level analysis and Design

Slices cut across all sub-systems

The Calculated Date

. []

18

More data shrinks the error bars.

High level analysis and Design

Slices cut across all sub-systems

The Calculated Date

. []

19

Now we have data!

nWith data, managers can…

nManage.

20

Without data managers can:

This project will
be done on time!

Or HEADS will
ROLL!

21

OR….

You guys are great.

I have faith in you.

I know you can do it!

I sure hope

you can

22

When the process generates data

nManagers can use that data to make
decisions.

nThose decisions exert control over the project.
– They change something.

23

The control knobs of project mgt.

Schedule

Quality

Staff Scope

24

Changing Schedule

nHard to do, schedule is usually fixed.

nThe best time to try to change the schedule is
early in the project.

nTwo weeks before the deadline is not a good
time to change the schedule.

25

Adding Staff

n Adding staff will increase productivity
nEventually.

n But it’s risky.

n For a period of 1-3 months the new staff will be a
net liability.

n Our hope is that the project will last long enough to
make the extra staff productive and make up for the
drain caused by adding them.

26

Lowering Quality

n Sometimes we think we can go faster by using lower
quality.

n Lower quality is achieved by working lots of
overtime.

n Overtime leads to messes.

n Messes take time to work around.

n This makes us go slower.

n The only way to go fast is to keep quality as high as
possible.

27

Controlling Scope

nWe can take out some features in order to
make the date.

nWe want to take out unimportant features.

n It would be a shame if we had already
implemented some of the unimportant
features.

nSo we always implement the most important
features first.

28

Home

Why are we here
What is XP?

Values
Planning

Game

40 hour
week

Open
Workspace

Pair
Programming

Simple
Design

Small
Releases

Metaphor

Continuous
Integration Test First

Design

Refactoring

Collective
Ownership

Coding
Standard

Customer
Team-member

User
Stories

Acceptance
TestsXUnit

29

How does Testing fit into this.

nXP moves QA to the front of the process to
participate in requirements and acceptance
tests.

nThis contrasts with QA’s traditional role at the
back end of the process – Dealing with what
usually comes out of back ends.

30

It all starts with User stories….

31

User Stories

nUser stories are lightweight use cases.
nUsually written on a card.

nOnly customers write them.
nAnd they can write them at any time.

nOnly customers can give them a priority.
nWhich determines when they are implemented.

nProgrammers can estimate them.

32

User Stories

nA good user story is the simplest statement
about the program that:
nThe customer cares about.
nTest cases can be written to verify.
nCan be reasonably estimated.
nCan be reasonably prioritized.

33

User Stories
nGathered one or two at a time.

nEstimated based upon measured historical
data, or by some explorative coding.
nWhen exploring, always estimate first, then

compare the estimate with reality.
nThe ratio between the two is your velocity and

should be applied to your estimates.

n Immediate feedback on:
nsize, completeness, testability, ability

to estimate.

34

Lifecycle of a Story

Write Estimate

hours-days

Chosen
for
Release

hours-years

Chosen
for
Iteration

days-months

Broken
into
Tasks

minutes

Acceptance
Tests
Available

days

Acceptance
Tests
Run

days

35

Acceptance Tests

n The customer and QA specify the Acceptance Tests
that will be needed in order to test each story.
n These are the true requirements. They are detailed,

unambiguous, and executable.
n An automated framework is developed so that

customers/QA can create tests directly.
n An iteration is not complete until the acceptance

tests run.
nOr rather, only stories whose acceptance tests run

are counted as “finished” at the end of the iteration.

36

Planning a release.

nThe customer chooses the stories to be
implemented for the release.
nHe chooses the ones that provide the

greatest business value.
nThe engineers estimate the stories.
nThe total estimate cannot exceed the team

velocity for the last release.
nIf it does, the customer must remove some stories.

nThe plan for the release becomes a soft
commitment, and a measuring stick for the
team.

37

Iteration Planning

nThe team, and the customer, negotiate the
next iteration in the current release.
nDevelopers review story estimates and team

velocity.

nCustomers select the user stories they want
in this iteration..

nThe team cannot exceed the velocity of the
previous iteration.

38

Task Planning

n The team (with the customer present) breaks the
stories for the iteration into tasks.

n They may notice commonality between tasks.
n This is a good time for some software design.

n The developers sign up for the tasks they want to
implement, and they estimate those tasks.
nA developer cannot sign up for more work than

he/she finished last iteration. (they cannot exceed
their personal velocity).

n If the task estimate add up to more than the story
estimates, then the customer must remove some
stories or tasks from the iteration.

39

Test first design.

nUnit Test cases are written before the code
that passes them.

nThis forces us to design the code from a
user’s point of view. (i.e. the test is a user)

n It also forces us to apply good rules of
abstraction and modularity, in order to test
individual bits of the code.

nAll this leads to a much better design.

40

The rhythm of development

nQuick oscillations between writing tests and
writing code and designing.
nThese iterations are typically a few

minutes long.

nEach test case is only a few lines of code.

nThe code that passes the test case is only
a few lines.

nWe take very small steps.

41

The tests.

nThe tests accumulate and are run
automatically by a test framework.
nLike JUnit.

nEvery time you make any change at all.
nYou run all the relevant tests.

nIf something breaks, you fix it before you
move on.

42

The tests

nThe tests and the production code
grow together.

nThey become compliments of each other,
like an antibody and an antigen.

nThe tests act as 100% accurate
documentation of the production code.
nIf you want to know how to do something.
nThere is a test case that shows you.

43

Conclusion

n QA is brought to the front of the process
n They sit in the release and iteration planning

meetings, participating in story writing.

nBased on those stories they write the acceptance
tests that truly define the requirements.

n They work with the developers during each iteration
to make sure the developers understand the
requirements so that the acceptance tests pass.

Why Are We Here?

Software development fails to
deliver; and fails to deliver value.

This failure has huge economic
and human impact. We need to

find a new way to develop
software. -- Kent Beck

Copyright  1998-2001 by Object Mentor, Inc
All Rights Reserved

45

Why Are We Here?

nBecause we like to program.

nAnd we want to find a way to do it:
nAs well as possible.

nAs much as possible.

nWith as little stress as possible.

nWith as much success as possible.

The Extreme Premise

The flattening of the cost
of change curve

Copyright  1998-2001 by Object Mentor, Inc
All Rights Reserved

47

Boehm said…

Cost of change grows exponentially with time

$1 Requirements

$10 Analysis

$100 Design

$1,000 Implementation

$10,000 Test

48

When costs increase exponentially

nWe need to do lots of up-front planning!
nEvery bug that can be caught early saves

us lots of money.
nBecause models are cheaper to modify

than code.

49

When costs increase exponentially

nWe are willing to make a very large
investment in up-front analysis and design
models.
nBecause the cost of late error discovery is

horrendous.
nErgo, waterfall mentality and big design up

front (BDUF) are the conventional wisdom.

50

But a few things have changed
in three decades.

nWe don’t have to walk down the hall and submit
a deck of cards to the operator and then wait a
day for our compile to finish.
nComputers are 1000X faster and 1000X cheaper.

nà 1,000,000 X power/$!!
nCompile/test cycle has gone from days to

seconds.
nWe have relational DBMSs, CM tools, CASE tools,

object databases, modular programming,
information hiding, etc.

n Finally, OO languages and principles make
software much easier to change.

51

So, perhaps the cost
of change can be flat

Project Time

C
o

st
...for much of the life of the system....for much of the life of the system.

If tools, practices, and principles are properly employed.

52

When costs don’t dramatically
increase with time.

nUp front work becomes a liability.
nWe pay for up front speculative work, some

of which will certainly be wrong.
nAmbiguity or volatility is reason to delay.
nSo we don’t plan for something that never

happens.
n It is cost effective to delay all decisions until

the last possible moment.
nWe only pay for what we use.

53

The value of waiting.

n If you implement a feature today, but it turns
out not to be valuable, you lose money and
opportunity.

n If you are uncertain and you can wait, then
the risk goes away over time.

nTime answers questions and removes
uncertainty.

54

Dealing with low cost changes.

nWe need a process that creates and then
exploits a flat change-cost curve.

nXP is such a process.

What is XP?

A Quick Summary

Copyright  1998-2001 by Object Mentor, Inc
All Rights Reserved

56

What is XP?
n XP is a lightweight methodology for small to medium

sized teams developing software in the face of
vague or rapidly changing requirements.
 -- Kent Beck.
nXP is:

nHumane.
nHonest.

nProductive.
nProfessional.
nFun.

57

What is XP?

n XP is a discipline of software development.
n There are certain things you must do.
nYou must write tests before code.
nYou must program in pairs.
nYou must integrate frequently.
nYou must be rested.
nYou must communicate with the customer daily.
nYou must follow the customer’s priorities.
nYou must leave the software clean and simple by the

end of the day.
nYou must adapt the process and practices to your

environment.

58

XP Motives

n Adaptability:
n In the business.
n In technology.
n In the team.

n Predictability.
nOverall plans and schedule.
n Feedback and tuning.

n Options.
nChange direction or priority at any time.

n Humanity.
nA mentality of sufficiency.

59

Developer Bill of Rights
n You have the right to know what is needed, with clear

declarations of priority.

n You have the right to produce quality work at all times.

n You have the right to ask for and receive help from peers,
superiors, and customers.

n You have the right to make, and update your own
estimates.

n You have the right to accept your responsibilities
instead of having them assigned to you.

60

The Customer Bill of Rights.

n You have the right to an overall plan, to know what can
be accomplished, when, and at what cost.

n You have the right to get the most possible value out of
every programming week.

n You have the right to see progress in a running system,
proven to work by passing repeatable tests that you
specify.

n You have the right to change your mind, to substitute
functionality, and to change priorities without paying
exorbitant costs.

n You have the right to be informed of schedule changes,
in time to choose how to reduce scope to restore the
original date. You can cancel at any time and be left with
a useful working system reflecting investment to date.

61

Why is it Extreme?

n Because we take good practices to extreme levels
(turning the knobs up to 10!):
n If code reviews are good, we’ll review code all the

time (pair programming).
n If testing is good, everybody will test all the time (unit

testing), even the customers (Acceptance Testing).
n If design is good, we’ll make it part of everybody’s

daily business (Refactoring).
n If simplicity is good, we’ll always leave the system

with the simplest design that supports its current
functionality. (The simplest thing that could possibly
work.

62

Turning the Knobs to 10 (Continued).

nIf architecture is important, everybody will
work defining and refining the architecture all
the time (Metaphor).

nIf integration testing is important, then we’ll
integrate and test several time a day
(continuous integration).

nIf feedback is good, we’ll get feedback quickly
-- seconds and minutes and hours, not weeks
and months and years (the Planning Game).

63

What makes XP different?

n Its early, concrete, and continuing feedback from
short cycles.

n Its incremental planning approach, which quickly
comes up with an overall plan that is expected to
evolve through the life of the project.

n Its ability to flexibly schedule the implementation
of functionality, responding to changing business
needs.

n Its reliance on automated tests to demonstrate the
presence of features.

n Its reliance on oral communications, tests, and
source code to communicate system structure
and intent.

64

What makes XP different?
(Continued)

n Its reliance on an evolutionary design
process that lasts as long as the
system lasts.

n Its reliance on the close collaboration
of programmers.

n Its reliance on practices that work with both
the short-term instincts of programmers and
the long-term interests of the project.

65

What makes XP familiar?

nXP matches the behavior of successful
programmers in the wild.
nTests.
nRefactoring.
nEvolutionary delivery.
nIncremental planning.
nLow overhead.

66

Three Processes

Waterfall Iterative XP

Time

Scope

67

XP Time Scales

Years

Months

Release

Iteration

Weeks

Implementation

Days

68

Values

nXP team members value:
nCommunication.

nSimplicity.

nFeedback.

nCourage.

Robert C. Martin

Robert C. Martin has been a software professional since 1970. He is
president of Object Mentor Inc., a firm of highly experienced experts that
offers high level object-oriented software design consulting , training, and
development services to major corporations around the world. In 1995 he
authored the best-selling book: Designing Object Oriented C++ Applications
using the Booch Method, published by Prentice Hall. In 1997 he was chief
editor of the book: Pattern Languages of Program Design 3, published by
Addison Wesley. In 1999 he was the editor of "More C++ Gems" published by
Cambridge Press. He is co-author of "XP in Practice", James Newkirk, and
Robert C. Martin, Addision Wesley, 2001. From 1996 to 1999 he was the
editor-in-chief of the C++ Report. He has published dozens of articles in
various trade journals, and is a regular speaker at international
conferences and trade shows.

	Title Page
	Presentation
	Bio
	Conference at a Glance
	Return to Main Menu

